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Exceptional catalytic mass activity

of PtFeCu 3-fold higher than that

of Pt/C
To efficiently design the Pt-based alloy nanocatalysts for oxygen reduction

reaction, we utilized first-principle data integrated with machine learning to search

for PtFeCu configurational spaces. We identified the promising candidates and

revealed the atomic-level understanding via first-principle calculations. Cu atomic

distribution remarkably modulated surface strain energies and segregation of the

alloying components toward better oxygen reduction reaction performance.

Tuning of Cu contents led to the high electrochemical performance of PtFeCu

nanocatalysts, which was successfully validated by experiments.
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The bigger picture

One of the challenging issues in

nanocatalyst design for catalysis

applications is to introduce the

atomic-level functionalities of

nanoparticles, determining the

activity and stability. Multi-

component systems can be

promising, but the enormous

configurational degrees of

freedom and optimization routes

for a target reaction remained

unsolved. We demonstrate the

combination of a machine-

learning approach and

experimental tests of PtFeCu

nanoparticles for oxygen

reduction reaction. Promising

candidates were efficiently

screened theoretically and

successfully validated by the

experiments. Both our

computational and experimental

outcomes indicate that the highly

active electrocatalytic

performance of PtFeCu originates

from Cu atomic distribution. Our

study suggests that first-principle

calculations combined with

machine-learning technology can

be a promising approach in

design of nanocatalysts to reduce

the gap between the simulations

and experiments.
SUMMARY

Platinum (Pt) alloys are expected to overcome long-standing issues
of Pt/C electrocatalysts for oxygen reduction reaction (ORR). En-
tangled with serious uncertainty in configurational and composi-
tional information, the design of a promising multi-component elec-
trocatalyst, however, has been delayed. Here, we demonstrate that
a first-principle database-driven machine-learning approach is
extremely useful for the purpose via exploring materials beyond
the regime of pure quantum mechanical calculations. Guided by a
computational ternary phase diagram we indeed experimentally
synthesized a PtFeCu nanocatalyst with 2 g per batch capacity
and measured its catalytic performance for ORR. Both our com-
putation and experiment consistently demonstrate that PtFeCu is
highly active due to the atomic distribution of Cu leading to
beneficial modulation of surface strain and segregation. Strikingly,
PtFehighCulow (776 mA cm�2

Pt and 0.67 A mg�1
Pt) exhibits not only

3-fold better specific andmass activities than Pt/C but also little per-
formance degradation over the accelerated stress test.

INTRODUCTION

Proton exchange membrane (PEM) fuel cells are promising due to their direct con-

version of chemical energy into electric power.1,2 They are not only more efficient

but also more environmentally friendly than combustion engines. It is not surprising

that advanced countries over the world adopted PEM fuel cells as renewable power

sources of electric locomotives.3

In practice, however, the efficiency and life span of PEM fuel cells are much lower

than theoretical prediction, in which nanocatalysts involved with kinetic reaction

are located at the center of the problems. The high material cost, substantial over-

potential, and instability in cycling operation of Pt-based nanocatalysts are the

main causes. Especially, oxygen reduction reaction (ORR), one of the key electro-

chemical reactions, is kinetically very sluggish with Pt nanoparticles in the cathode

and even the noble materials suffer serious structural degradation via mutual

agglomeration or dissolution into acidic aqueous solution.4,5

Over the last few decades, considerable amounts of concerted works have been

conducted to develop active and durable electrocatalysts, but unfortunately no

commercial-grade alternative to costly Pt metal was deployed.5,6 There is a

consensus that a pure Pt nanoparticle cannot meet the desired catalytic perfor-

mances of activity and durability for ORR in PEM fuel cell operation. Thus, various
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nanoscale alloy particles have been proposed,7,8 expecting a synergic effect from

the components. Several binary Pt alloys (PtM with M = Cu, Fe, Co, Ni, Y, etc.)

have been investigated extensively for ORR catalysis guided by theoretical and

computational models claiming that the activity can be improved substantially by

tuning the binding energies of reactants and intermediates in the rate-determining

steps.9–13 Indeed, the ordered fct-PtFe nanoparticles had a better ORR performance

than pure Pt due to the weaker OH binding energy on its surface and compressive

strain to Pt by the smaller Fe.10

Another interesting example is the so-called core-shell nanoparticles of Pt (shell)

with 3d transition metals (core). In the system, ORR is catalyzed by the surface Pt,

while the cheaper and smaller transition metals located at the core induce compres-

sive strain to enhance the activity of the Pt. The core-shell nanoparticles can be also

more resistive against dissolution due to the protective Pt atomic shells. Likewise,

both PtCu3 and PtCo exhibited outstanding catalytic performance toward

ORR.11,14 Despite the promising reports, binary nanocatalysts of Pt-M still were

observed to undergo structural degradation during long-term electrochemical cy-

clings.15,16 Surface segregation of core elements followed by electrochemical disso-

lution induced by oxidative adsorbates was proposed as its major mechanism.17 This

clearly indicates that two-component alloy nanocatalysts may not be sufficient to

ensure both catalytic activity and durability in the practical operation of PEM fuel

cells.

Introducing a third component is an attractive strategy to further modulate the cat-

alytic performance and stability of the ORR in acid media. Several studies have been

reported in which Pt-based ternary nanoparticles were used for ORR catalysis.18–21

Arumugam et al.22 elucidated that Cu helps stabilize nanoscale PtFe intermetallic

compounds by protecting the Fe from electrochemical dissolution. Also, it has

been reported that the stoichiometric number of each component is important for

achieving optimal oxygen binding energy for ORR catalytic activity.23 A more recent

combined computational and experimental study has indicated that the elemental

distributions of Ni and Cu are important for the long-term stability of PtNiCu.24 Like-

wise, ternary nanoparticles still can be promising electrocatalysts with superior activ-

ity and durability to binary nanoparticles.

Yet, there has been no extensive exploration of the configurational and composi-

tional space in ternary alloys because the task is challenging irrespective of whether

experimental or computational methods are used. In experiments, the formidably

multi-dimensional variables for both the characterization of electrocatalytic perfor-

mance and fabrication routes for ternary nanoparticles result in uncertainties con-

cerning the accurate and comprehensive understanding of the catalytic properties.

Computational approaches often have both significant uncertainties concerning the

sizes and configurations of materials and computational costs that are increasing

exponentially, even with the present-day supercomputing architectures.

It is noteworthy that the state-of-the-art machine-learning technique has been used

successfully to solve scientific problems, which has not been the case for conven-

tional computational methodologies.25–29 The key idea in the approach is to param-

etrize atomistic interaction energies into a neural network as a function of structural

descriptors locally constructed by component species. Various efficient algorithms

of the machine-learning technique, such as the high-dimensional neural network,

Gaussian processing regression, and kernel ridge regression have been used to

parametrize the atomic contribution of energy to the system.
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The integration of first-principle calculations and machine-learning algorithms is

a very attractive approach to deal with the long-standing problems associated

with conventional computational methods (materials gaps and costly calculations)

in that the neural network potential (NNP) can be established successfully

through rational selection and an extensive train of samples from an accurate

database. For example, the Behler group30–32 applied the NNP in a wide range

of fields, from surface catalysis to metal organic frameworks, and Artrith and Kol-

pak33 demonstrated the NNP with bimetallic AuCu nanocatalysts for the reduc-

tion of CO2. In our previous study,34 it was shown that the NNP can facilitate

the design of functional nanomaterials for ORR. However, the compositional var-

iations were limited, and experimental validation was not done. Note that exper-

imental validations of predictions from state-of-the-art approaches are still

insecure.

Herein, we extensively utilized the first-principle density functional theory (DFT)

calculations interlocked with the machine learning technique for PtFeCu nanopar-

ticles as large as 2 nm. Using DFT calculations, we established an accurate data-

base for the catalytic properties of the ternary PtFeCu models for ORR, which

were analyzed using a deep learning algorithm to parametrize the atomistic inter-

action potentials. Our approach mapped a ternary phase diagram from a high-

throughput screen of 396,862 structures, which were validated consistently

through experimental synthesis via a simple and fast sonication method that

yielded products approaching a commercial-grade product, while excelling the

lab-scale products (mg). Using four representative ternary PtFeCu nanoparticles

with varying compositions, we extensively validated the computational predic-

tions by experimental tests for ORR activity and stability. We identified the

most promising ORR electrocatalyst structure of PtFeCu nanoparticles and its un-

derlying mechanism via electronic structures and the surface strain distribution to

propose a key design principle. Our proposed ORR electrocatalyst, PtFehighCulow,

surpassed the 2020 US Department of Energy’s (DOE’s) target for both mass ac-

tivity and stability.
RESULTS AND DISCUSSION

NNP construction

To efficiently obtain the NNPs for the ternary PtFeCu nanoparticles, we decoupled

the shape effects (morphology and size) and alloy effects (composition and config-

uration) as shown in Figure 1. The dataset was constructed to simulate the config-

urational space of the PtFeCu nanoparticles. Atomic environments for large nano-

particles were duplicated, leading to the transferability of the NNP, but they were

exposed to significantly different local environments for smaller nanoparticles. This

can be regulated by changing the cutoff radius considering the local atomic envi-

ronment, but a small cutoff radius leads to a lack of information, while a large cut-

off radius increases the computational cost by a tremendous amount. Thus, the

cutoff radius was set as 5 Å to ensure the atomic environment of the nearest

neighbor atoms (Figure S1). Consequentially, a total of 44,884 atomic local envi-

ronments were prepared with PtFeCu compositional and configurational space,

and they were split randomly into a training set and a test set. Our NNP was

trained successfully, such that the root-mean-square error (RMSE) of the test set,

which also contained structures different from the training structures (larger-sized

nanoparticles with random compositions), was 10.34 meV atom�1 (Figure S4). It

was shown that the shape and alloy effects were dependent on the cutoff radius

(details are included in the supplemental information).
Chem Catalysis 1, 855–869, September 16, 2021 857



Figure 1. Schematic diagram of ternary alloy configuration search and theoretical predictions and experimental validation for ORR
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Investigation of the stable configuration of ternary alloys

Using parametrized NNPs, we explored 2.0 nm ternary PtFeCu nanoparticles of a trun-

catedoctahedron in the composition rangeof0.6<Pt<1atomic fraction. The lower limit

of the Pt composition was set since it is a minimal Pt-skinned PtFeCu nanoparticle.

Among the screened nanoparticles, we identified the most thermodynamically stable

configurations with varying alloying compositions by Monte Carlo (MC) simulations

along the Pt composition line, as shown in Figure 2. It clearly shows that each alloying

element prefers to occupy a specific shell (Figures 2A–2C). Pt atoms tend to be in the

outermost (first) shell,while theFeatoms tend tobe in the secondshell, and theCuatoms

are dispersed somewhat randomly over the inner shells of the nanoparticles. The Pt in

these ternary nanoparticles should be under compressive strain by the smaller Fe

atom.Figures2D–2Fpresent the same trendsasFigures2A–2C.These results areconsis-

tent with the experimental observations of typical Pt-based alloy catalysts.11,35

From the configurational analysis, it is apparent that the amounts of Pt should be

more than the ideal composition (0.6) to configure a Pt-skinned structure with a

Fe-Cu core (Figure 2A). This implies that the ternary compounds have subtle interac-

tions, which cannot be captured solely by the thermodynamic surface energy aspect,

e.g., Pt has the lowest surface energy among the three elements. Furthermore, Fe is

likely to be in the subshells, and Cu progressively occupies the core site as Pt compo-

sition decreases (Figures 2D–2F).

We mapped the ternary phase diagram using the DFT calculations of alloy PtFeCu

nanoparticles, as shown in Figures 3A and 3B, in which the ground-state structures

are identified with an energy convex hull in the composition range of 0.6 < Pt <

1.0. The hull points appearing at Pt compositions greater than 0.8 mostly show

the structures of the Pt-skinned shell. Below the Pt composition of 0.8, Fe and Cu

likely are co-distributed in the first shell. As shown in Figures 2D–2F, Cu is more likely

to be in the first shell than Fe:Pt compositions, in which the compositions of Cu and

Fe start to appear in the first shell are 0.80 and 0.73, respectively.

To foresee the catalytic performance of PtFeCu ternary nanoparticles for ORR, three

different compositions were selected, i.e., Pt0.82Fe0.18 (PtFe), Pt0.82Fe0.12Cu0.06
858 Chem Catalysis 1, 855–869, September 16, 2021



Figure 2. Configurational spaces of PtFeCu ternary nanoparticles of 2.0 nm size in the range of 0.6 < Pt < 1

Number of atoms in the (A) first shell, (B) second shell, and (C) third shell of the 2.0 nm truncated PtFeCu ternary nanoparticles. Atomic fraction of (D) Pt,

(E) Fe, and (F) Cu in each shell of the 2.0 nm, truncated PtFeCu ternary nanoparticles.
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(PtFehighCulow), and Pt0.8Fe0.08Cu0.12 (PtFelowCuhigh), as shown in Figure 3D, consid-

ering that the alloy nanoparticles should have the Pt-skinned structure and thermo-

dynamically stable energy convex hull points. It is to be noted that the Cu composi-

tions were restricted since the Cu tends to be located at the outermost shell as its

content increases. Then, structures with the corresponding compositions were syn-

thesized to cross-validate the computational predictions. Figure 3C shows the X-ray

diffraction patterns of the PtFe and PtFeCu catalysts that were synthesized, along

with the commercial Pt/C. The lattice symmetries of almost all the nanoparticles

are the face-centered cubic symmetry, of which topologies are truncated octahedra

(Figure S12).36 In addition, phase separation was not observed in all of the regions.

We also found that the (111) peak positions of PtFe and PtFeCu catalysts were

shifted to higher angles than the peak position of Pt/C, which indicates that the rela-

tively small-sized Fe and Cu atoms were incorporated into the Pt lattice, inducing

the compressive strain.37,38 Based on the Scherrer equation, the crystallite sizes

of the samples were calculated as 2.1, 2.2, and 2.3 nm for Pt0.83Fe0.17 (PtFe),

Pt0.78Fe0.15Cu0.07 (PtFehighCulow), and Pt0.8Fe0.09Cu0.13 (PtFelowCuhigh), respectively.

As shown in Figure S8, the particle size and distribution were confirmed from low-

magnified transmission electron microscopy (TEM) images. All samples show highly

dispersed and uniform particle sizes (�3 nm) on the carbon support.

We performed STEM-EDSmapping and line profiles scanned with 0.08 nm of point res-

olution to investigate the compositional information of the PtFe and PtFeCu nanopar-

ticles by analyzing the elemental distribution, as shown in Figures 3E and 3F. In the

case of PtFe nanoparticles, we observed that the Fe-K signal existed in the core region,

and the Pt-M signal existed throughout the entire nanoparticle. Based on the difference

between the two profiles, it can be expected that the PtFe catalyst consists of approx-

imately one or two layers of Pt shell (�0.3–0.5 nm) on the surface of the catalyst. Also, the

PtFeCu catalyst had core-shell structure irrespective of its composition. It is expected
Chem Catalysis 1, 855–869, September 16, 2021 859



Figure 3. Thermodynamic ternary diagram and spectroscopic characterization Pt-based ternary nanoparticles

(A and B) (A) Ternary diagram and (B) the convex hull points of PtFeCu ternary nanoparticles (2.0 nm) in the range of 0.6 < Pt < 1. The orange stars are

synthesized compositions.

(C and D) (C) XRD patterns and (D) structural information of representative compositions of PtFe and PtFeCu nanoparticles.

(E) Scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) mapping.

(F) STEM-EDS line profiles.

The dotted line in (C) indicates the (111) peak of Pt (JCPDS no. 04-0802).
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that the sequential acid treatment and heat treatment during the synthesis led to the for-

mation of this core-shell structure.35 In addition, we confirmed that more of the Cu

atoms than the Fe atoms were distributed outside the NP (Figure 3E). The PtFeCu nano-

particles that were synthesized experimentally have similar structural conditions, such as

particle size, compositions, and elemental distribution, i.e., they are consistent with the

computational model systems.
860 Chem Catalysis 1, 855–869, September 16, 2021



Figure 4. Theoretical predictions and electrochemical performance of pure (Pt), binary (PtFe),

and ternary (PtFeCu) nanoparticles

(A) Calculated catalytic activity volcano for the ORR via d band center energy of Pt.

(B) Elemental distribution in the subshell (second shell) of 2.0 nm PtFe and PtFeCu nanoparticles.

(C and D) (C) CVs and (D) LSV curves for ORR.
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Identification of a promising ORR electrocatalyst

Catalytic performance was evaluated by mapping the free energy diagram of ORR

for four nanoparticles, i.e., Pt, PtFe, PtFehighCulow, and PtFelowCuhigh (Figure S5).

The performance was in the order of PtFehighCulow > PtFe > PtFelowCuhigh > Pt

with overpotentials of 0.31, 0.33, 0.37, and 0.45 eV, respectively. The prediction

was consistent with the d band center energy of Pt, as shown in Figure 4A. It is note-

worthy that PtFehighCulow is at the top of the volcano among the nanoparticles due to

the optimal binding energy of the oxygenate intermediates.

It has been reported10 that the activity of Pt-based alloy nanocatalysts can be regu-

lated by the strain field by mixing different sized elements in a nanoparticle. The key

feature in this technology is to locate proper amounts of strain for the optimal bind-

ing energy. This is because strain energy regulates the d band center energy. Thus,

the control of the spatial distribution of elements with different size is important for

tuning the catalytic activity. As shown in Figure 4B, the elemental distributions in the

second shell of the PtFe, PtFehighCulow, and PtFelowCuhigh were computed. It is

shown clearly that the compressive strain is linearly correlated with the amounts of

Fe in the second shell. As the Cu loading increased, the amounts of Pt did not

change significantly, while that of Fe decreased, which largely affects the level of

compressive stain with smaller size of Fe than Pt. Consequentially, small amounts

of Cu loading bring the d band center energy toward the optimal.

The electrocatalytic performance of our nanoparticles was determined with a typical

three-electrode cell in an acid medium to validate the theoretical predictions. Fig-

ure 4C shows the cyclic voltammograms (CVs) of our samples in N2-saturated
Chem Catalysis 1, 855–869, September 16, 2021 861



Figure 5. Electrochemical and chemical stabilities of pure (Pt), binary (PtFe), and ternary (PtFeCu)

nanoparticles

(A) Surface segregation energy of alloy component predicted by DFT calculations. The segregation

of Cu to edge([111] 3 [111]) sites in PtFehighCulow nanoparticle is not thermodynamically plausible.

(B) Atomic fraction of the first and second shell of the 3 nm nanoparticles with 807 atoms of PtFe,

PtFehighCulow, and PtFelowCuhigh for experimental composition (error bars represent standard

deviation from the mean).

(C and D) (C) Specific activity and (D) mass activity at 0.9 V (versus RHE) before and after AST 30k.
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0.1 M HClO4 along with that of Pt/C. Interestingly, both PtFehighCulow and

PtFelowCuhigh had Cu dissolution peaks at 0.7 V in the first cycle,39 but the peaks dis-

appeared immediately, which provided evidence of the de-alloying of the Cu from

the outermost layer (Figure S9). This observation is consistent with our computa-

tional outcomes, i.e., that Cu tends to locate at the outermost layer of the nanopar-

ticles as the Cu loading increases (Figure 2A). The electrochemical surface area

(ECSA) of the samples was evaluated by integrating the electrical charges for the

hydrogen desorption peak in the potential range of 0.03–0.4 V (versus reversible

hydrogen electrode [RHE]).40 The calculated ECSAs of the samples were 84.1

102.6, 86.7, and 67.4 m2 g�1
Pt for Pt/C, PtFe, PtFehighCulow, and PtFelowCuhigh,

respectively (Figure S11).

The linear sweep voltammograms (LSVs) of the samples for ORR were recorded in

O2-saturated 0.1MHClO4 electrolyte with a rotating speed of 1,600 rpm. Compared

with Pt/C, the PtFe and PtFeCu catalysts show both a higher onset potential and half-

wave potential (E1/2). Figures 5C and 5D show that the PtFehighCulow exhibits the

highest specific (776 mA cm�2
Pt) and mass (0.67 m2 g�1

Pt) activities at 0.9 V, amount-

ing to 3.1 and 3.2 times better than those of Pt/C (248 mA cm�2
Pt and 0.21 m2 g�1

Pt,

respectively). It is interesting to note that the experimental test for PtFehighCulow
show outstanding performance of onset potential and catalytic activities, i.e., spe-

cific and mass activities, for ORR, confirming that added Cu to a binary PtFe
862 Chem Catalysis 1, 855–869, September 16, 2021
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nanoparticle plays an important role for enhancing the catalytic function. While the

PtFe and PtFelowCuhigh exhibit comparable mass activity, the specific activity of

PtFelowCuhigh is much higher than PtFe. The difference in ORR performance between

theoretical prediction and the experimental results is attributed to the different

ECSAs and the slightly smaller size of the synthesized PtFe nanoparticles: the parti-

cle diameter of the synthesized PtFe catalysts was approximately 0.3 nm smaller than

that of the PtFeCu catalysts.

Figure 4 shows that the enhanced activity of the ternary alloys was proven by both

computational and the experimental results. However, it is difficult to use these alloys

in practical and commercial applications without the assurance of long-term stability.

Accordingly, we evaluated the stability of the ternary alloy nanoparticles. The electro-

chemical dissolution potentials were computed for the model nanoparticles, and their

values for PtFe, PtFehighCulow, and PtFelowCuhigh with identical particle size are 0.96,

0.93, and 0.91 V, respectively, as described in Figure S7. The binary (PtFe) and ternary

(PtFeCu) nanoparticles were estimated to have higher dissolution potentials than pure,

2.0 nm nanoparticles of Pt (0.83 V versus standard hydrogen electrode [SHE]). It is inter-

esting to note that the PtFe binary catalyst has the highest electrochemical stability.

The durability of alloy nanocatalysts is not governed only by their electrochemical

environments because catalysts inevitably undergo chemical reactions on their sur-

face. In fact, there are many reports that 3d transition metals, such as Fe and Cu, can

be segregated easily by their abilities to adsorb oxygen.41–43 Hence, it is necessary

to determine whether the surface structures maintain their structural integrity during

the adsorption of oxygenate intermediates during ORR.

To investigate the surface segregation induced by the oxygen adsorbate, we set up

a passivation model in which it was assumed that oxygen is poisoned at the edge or

vertex sites of a nanoparticle due to their strong oxygen binding.44–46 The segrega-

tions of alloying elements (Fe and Cu) into four surface sites ([111], edge([111] 3

[111]), edge([111] 3 [100]), and [100]) were inspected for PtFe binary nanoparticles

and PtFeCu ternary nanoparticles. The following order indicates the difficulty of sur-

face segregation, [100] > [111] > edge([111]3 [100]) > edge([111]3 [111]), as shown

in Figure 5A. The [100] and [111] facets have stronger resistance against surface

segregation than edge([111] 3 [100]) and edge([111] 3 [111]). It is meaningful in

that the [111] facets are both active for ORR and resistive to the surface segregation

of alloying components.

Overall, in the PtFeCu nanoparticle Fe has higher tendency to segregate into the sur-

face than Cu. The Fe segregation energies of PtFehighCulow and PtFelowCuhigh into

the [111] facet are �1.07 and �0.96 eV, respectively, while the Cu segregation en-

ergies are �0.46 and �0.58 eV, i.e., approximately half of the affinities of Fe. The

relatively low surface segregation energies of Cu atoms also have been observed

in other sites, as indicated in Figure 5A. This implies that the high composition of

Cu in the PtFeCu ternary alloy can improve chemical stability since Cu replaces Fe

in the subshell. However, the Cu concentration is limited in the PtFelowCuhigh
(Pt0.8Fe0.08Cu0.12) because, as the Cu composition increases, Cu atoms easily can

be located at the outmost surface sites in the ternary catalyst. It can be inferred

from the results that the structure of the Pt skin can be destroyed by the high content

of Cu due to the Cu in the surface and its de-alloying process (Figures 2A and S9).

The distribution of the alloying elements was analyzed further to infer the stability of

PtFeCu with different compositions (Figure 5B). Previous studies have demonstrated
Chem Catalysis 1, 855–869, September 16, 2021 863
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that the existence of different elements in the first shell is critical in the degradation

of the catalysts.24 Since it was also determined that the sub-surface elements can be

segregated into the outermost shell, the elemental distributions in first and second

shells were computed. The atomic fraction was averaged with 10 randomly gener-

ated initial configurations of 3.0 nm nanoparticles from 9,000 MC step simulations.

As the Cu content increases, the Fe compositions of both the first and second shells

decrease. These results also indicate that the introduction of Cu can enhance the cat-

alytic stability. It is expected that Cu in the outermost shell is likely to be de-alloyed

and accordingly, the PtFelowCuhigh nanoparticles with low Fe contents in their first

and second shells will be resistive over electrochemical cycles.

The improvement of durability by the formation of ternary alloys was also demonstrated

by the experimental durability tests. An accelerated stress test (AST) suggested by US

DOE was conducted by using square wave potential cycling of 0.6 V for 3 s and

0.95 V for 3 s. Figures 5C, 5D, and S11 compare the catalytic activities, i.e., specific ac-

tivity andmass activity, and ECSA at 0.9 V before and after AST for 30,000 (30k), respec-

tively. It was confirmed that the Pt/C and PtFe catalysts have similar durabilities. From the

TEM images in Figure S8, we found that the large drop (�42.1%) of ECSA in PtFe is due

to the growth of the particles (from 2.95 to 4.56 nm) during the AST 30k. However, both

PtFeCu catalysts increased in size by only 0.3 nm during the experiments. Besides, we

observed that the variations of DE1/2 after AST 30k were 17 mV for PtFe, only 4 mV

for PtFehighCulow, and �4 mV for PtFelowCuhigh (Figure S10). The results indicate that

the addition of Cu enhances the durability of the PtFe catalyst. In addition, the specific

activity and mass activity values of the PtFehighCulow samples were three times higher

than that of Pt/C (Figures 5C and 5D), and their mass activity exceeded the US DOE’s

2020 target (0.44 A mg�1
Pt) before and even after the AST 30k.

In this study, a systematic investigation of the previously reported beneficial roles of

Cu was conducted, including the modulation of the strain energy of the surface Pt

and the prevention of the segregation of Fe into the active surfaces of the catalyst.

Furthermore, the machine-learning-driven, configurational-space searching algo-

rithm enabled the optimization of the alloy ratio of PtFeCu. PtFelowCuhigh exhibited

the best catalytic performance among the samples of ternary composition. Our re-

sults for the catalytic performance of PtFelowCuhigh are comparable with those of

the previously reported PtFe binary and ternary nanocatalysts for ORR (Table S3).

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be informed to

and will be fulfilled by the lead contact, Byungchan Han (bchan@yonsei.ac.kr).

Materials availability

This study did not generate any new unique reagent or material.

Data and code availability

All data supporting this study are available in the manuscript and supplemental

information.

Computational details

We utilized Kohn-Sham DFT calculations as implemented in the Vienna ab-initio

Simulation Package.47,48 We used projector-augmented wave pseudo-potentials

for the interaction between the core and electrons.49 All Kohn-Sham DFT equations
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were calculated with the energy and force convergences of 10�5 eV and 0.05 eV Å�1,

respectively, and the basis plane waves were expanded with a cutoff energy of

520 eV. The exchange-correlation functional was described by the generalized

gradient approximation of Perdew-Burke-Ernzerhof (PBE)50 and revised PBE.51

The spin polarization and van der Waals (vdW) interaction with the DFT-D3 method

by Grimme et al.52 were considered, and the magnetism of PtFeCu was obtained by

initializing the different magnetic moments of Fe. The G-point scheme was used for

the nanoparticle calculations, and a vacuum space of 10 Å was guaranteed to

neglect the interaction between the periodic images. The configurations and com-

positions of the nanoparticles were randomly generated with compressed lattice pa-

rameters from the bulk (0.975 bulk lattice) to incorporate the compressive effect on

nanoparticle optimization in a vacuum.53 Each nanoparticle for the first-principle

database was calculated with a single point.

The adsorption energy (Eads) of an adsorbate was calculated as shown in Equation 1,

Eads = ENP+ adsorbate � ENP � Eadsorbate; (Equation 1)

where ENP + adsorbate, ENP, and Eadsorbate are the total energy of a nanoparticle with

adsorbate, a nanoparticle, and an adsorbate, respectively. The free energy (DG) in

ORR was calculated with Equation 2, as previously proposed54 to identify the ther-

modynamic potential for the spontaneous ORR reaction.

DG = DE +DZPE � TDS � neU; (Equation 2)

where DE is the change in the internal energy of the reaction obtained by the DFT

calculations. DZPE and DS are the changes in the zero-point energy and the vibra-

tional entropy, respectively. U is an electrode potential referenced to the standard

hydrogen electrode, and n is the number of electrons participating in the reaction.

The free energy diagram was plotted at pH 0 and the associative ORR mechanism

was considered (Equations 3, 4, 5, and 6):

�+O2 +H+ + e�/ �OOH; (Equation 3)
�OOH+H+ + e�/ �O+H2O; (Equation 4)
�O+H+ + e�/ �OH; (Equation 5)
�OH+H+ + e�/ � +H2O: (Equation 6)

The reaction free energy of ORR was calculated from the experimental value54 of the

following reaction, O2 + 2H2 / 2H2O, DG =�4.92 eV at 298.15 K and 0.035 bar. All

oxygenate intermediates were adsorbed on the (111) surface of our model nanopar-

ticles, which were passivated by oxygen at the edges and vertexes, as was done in

previous studies.46,55 The adsorption sites were selected as the sites that appeared

most frequently in the surface (Figure S6).

The NNP was constructed with an atomistic machine-learning package (AMP)56 in-

terfaced with atomistic simulation environment.57 The Gaussian descriptors of radial

and angular symmetry functions (G2 and G4) proposed by Behler and Parrinello25

were employed. The local symmetries were considered within the range of 5 Å.

With various parameters set of G2 and G4, a total of 108 symmetry functions as a

unique vector for each atomic species was used for the input layer of the neural

network. The activation function between the hidden layers was a hyperbolic

tangent, and the potential was trained until the RMSE was less than 1 meV atom�1

with the Broyden-Fletcher-Goldfarb-Shanno algorithm.58–60 Other hyperparameters
Chem Catalysis 1, 855–869, September 16, 2021 865



ll
Article
of the number of nodes and hidden layers were tested with 40-30-20-10 and 15-15 to

efficiently train potentials while preserving the test RMSE of 10 meV atom�1.

To search thermodynamically stable configurations as a function of alloy composi-

tion, we performedMonte Carlo simulations in a grand canonical ensemble scheme.

Each Monte Carlo step was composed of N attempts of interchanging atomic posi-

tions, which were selected randomly according to Metropolis’s algorithm.34,61 All

simulations were conducted until the trial attempts reached 10,000 at T is close to

zero Kelvin neglecting any thermal effect.

The surface segregation energy (Eseg) of the alloy component induced by the

adsorption of atomic oxygen was calculated to evaluate the chemical stability of

the ternary PtFeCu nanoparticles, as shown in Equation 7:

Eseg = EðPtmFenCulÞseg � EðPtmFenCulÞinitial; (Equation 7)

where E(PtmFenCul)seg and E(PtmFenCul)initial are total energy of PtmFenCul with and

without surface segregation, respectively. m, n, and l are the total atom numbers of

Pt, Fe, and Cu, respectively, in the ternary PtFeCu nanoparticle. Herein, the lower

segregation energy is the easier segregation occurs.

Synthesis of the PtFeCu

The PtFe catalyst was synthesized by a simple, ultrasound-assisted, polyol method.

First, 2.6 mmol of Pt(acac)2, 3.9 mmol of Fe(acac)3, and 1.35 g of thermally graphi-

tized Ketjen black 600J (at 1,200�C) were dispersed in 100 mL of Ar-purged ethylene

glycol (EG). This precursor dispersion was irradiated with a solid, horn-type sonicator

(Sonics &Materials, VCX-750, tip diameter: 13 mm; amp. 40%). During the ultrasonic

reaction for 4 h, the temperature was maintained above 150�C. Then, the dark slurry

was sieved with a membrane filter (Advantec Toyo Kaisha, 0.4 mm pore size). To re-

move the residue and EG, we washed the sample several times with excess ethanol

and deionized (DI) water. The sample flake that was obtained was dried overnight in

an oven at 80�C overnight. Then, the as-prepared sample was placed in an alumina

crucible followed by annealing at 400�C in a mixture of H2/Ar (v/v % = 4/96) for 2 h.

To remove any undesirable residues, such as FeOx, from the annealed sample, the

sample was dispersed in mixed ethanol and 0.1 M HClO4 (v/v % = 1/4) followed

by acidic treatment twice at 94�C over a period of 2 h. The ternary PtFeCu catalysts

were synthesized by the same procedure, except for the composition and ratio of the

metal precursors. All samples were synthesized at 2 g per batch.

Characterization

The crystal structure was characterized using an X-ray diffractometer (XRD, Bruker

D2 Phaser XE, Cu Ka, l = 1.5406 Å). The elemental composition and Pt loading of

the sample were calculated by averaging the values measured using an elemental

analyzer (FlashEA 1112, Thermo Finnigan) and inductively coupled plasma atomic

emission spectroscopy (ICP-AES, Optima 4300 DV). The Pt loading in the catalyst

film on a rotating disk electrode (RDE) was evaluated using an X-ray fluorescence

analyzer (HORIBA, MESA-50). Particle size and the distribution of alloying elements

in the sample were obtained using field emission TEM (FE-TEM) (FEI, Talos F200X,

200 kV) and Cs-corrected FE-TEM (FEI, Titan cubed G2 60-300, 300 kV).

Electrochemical measurements

A sample of 10 mg of powder was dispersed in 10 mL of solution mixed with DI water

and isopropyl alcohol (v/v % = 4:1). Ionomer dispersion (FSS-2, Asahi Glass) of 10 mL

was added to the catalyst dispersion and sonicated using a bath-type device until a
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uniform catalyst ink was formed. Then, 13.3 mL of the catalyst ink was placed on the

glassy carbon RDE (5.0 mm disk OD; 12.0 mm OD PTFE shroud; active area,

0.196 cm2; Pine Research Instrumentation). The Pt loading on the glassy carbon

was fixed at 20.4 mg cm�2. Electrochemical measurements were conducted using

a three-electrode cell system that consisted of catalyst-coated RDE as a working

electrode, an RHE (Gaskatel) as a reference electrode, and Pt wire as a counter elec-

trode. Before any measurements were made, the catalyst-coated RDE was cleaned

by 300 cyclings of the potential over the range from 0.03 to 1.1 V (versus RHE) in N2-

saturated 0.1 M HClO4. The CVs of each sample was recorded at a scan rate of

20 mV s�1 in the solution. An LSV of each sample for ORR was recorded at a scan

rate of 10 mV s�1 and 1,600 rpm in the potential range from 0.0 to 1.1 V (versus

RHE) in O2-saturated 0.1 M HClO4. The LSV curve was also recorded to remove

the background current under the same condition except for the N2-saturated solu-

tion of 0.1 M HClO4. IR-compensation was also conducted by impedance measured

at 0.7, 0.8, and 0.9 V during the ORR catalysis. The AST was conducted by applying

square wave potential cycles between 0.6 V (3s) and 0.95 V (3s) for 30k in accordance

with the US DOE protocol for the electrocatalyst.
Conclusions

We demonstrated the catalytic properties of PtFeCu nanocatalysts for ORR by using

a machine-learning-driven configurational searching algorithm of NNP for first-prin-

ciple calculations. It was successfully applied to identify the ground-state structure

from calculated ternary nanoparticle phase diagram. More interestingly, we un-

veiled the most promising compositions of the alloying components with underlying

mechanism and key descriptor of the catalytic performance. To validate the compu-

tational outcomes, ternary PtFeCu nanoparticles were experimentally designed with

2 g per batch production capacity, which is close to commercial-grade production.

Four nanoparticles with varying alloying compositions (Pt, PtFe, PtFehighCulow, and

PtFelowCuhigh) were successfully fabricated in accordance with our computational

phase diagram for the ternary nanoparticles. Experimental measurements for elec-

trocatalytic performance of PtFehighCulow for ORR activity and the durability ex-

ceeded the US DOE 2020 target even after prolonged accelerated tests. Both our

computational and experimental studies posited that the underlying mechanism

of high catalytic performance is the fact that Cu plays a key role for regulating surface

strain distribution and segregation of Fe atoms. In particular, the PtFehighCulow
nanoparticles had an ideal strain due to Fe and Cu in the second shell of the nano-

particle. Our computational predictions were substantiated consistently by the

experimental measurements. Our strategy of interlocking the theoretical approach

with experimental validation can be promising for overcoming the materials size

and the component gaps to develop highly functional electrocatalysts far beyond

the conventional pure Pt or binary PtM catalysts.
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